Glucosamine exposure reduces proteoglycan synthesis in primary human endothelial cells in vitro
نویسندگان
چکیده
PURPOSE Glucosamine (GlcN) supplements are promoted for medical reasons, for example, for patients with arthritis and other joint-related diseases. Oral intake of GlcN is followed by uptake in the intestine, transport in the circulation and thereafter delivery to chondrocytes. Here, it is postulated to have an effect on synthesis and turnover of extracellular matrix constituents expressed by these cells. Following uptake in the intestine, serum levels are transiently increased, and the endothelium is exposed to increased levels of GlcN. We investigated the possible effects of GlcN on synthesis of proteoglycans (PGs), an important matrix component, in primary human endothelial cells. METHODS Primary human endothelial cells were cultured in vitro in medium with 5 mM glucose and 0-10 mM GlcN. PGs were recovered and analysed by western blotting, or by SDS-PAGE, gel chromatography or ion-exchange chromatography of (35)S-PGs after (35)S-sulphate labelling of the cells. RESULTS The synthesis and secretion of (35)S-PGs from cultured endothelial cells were reduced in a dose- and time-dependent manner after exposure to GlcN. PGs are substituted with sulphated glycosaminoglycan (GAG) chains, vital for PG function. The reduction in (35)S-PGs was not related to an effect on GAG chain length, number or sulphation, but rather to the total expression of PGs. CONCLUSION Exposure of endothelial cells to GlcN leads to a general decrease in (35)S-PG synthesis. These results suggest that exposure to high levels of GlcN can lead to decreased matrix synthesis, contrary to what has been claimed by supporters of such supplements.
منابع مشابه
Chronic Exposure of Human Endothelial Progenitor Cells to Diabetic Condition Abolished the Regulated Kinetics Activity of Exosomes
By virtue of lifestyle change, incidence of type 2 diabetes is increasingly being raised with different up-surging pathologies. This condition found to disqualify endothelial progenitor cells during neo-vascularization. Besides to an aborted differentiation property, malfunctioned paracrine activities exacerbate vascular abnormalities. It is found nano-scaled exosomes play essential roles on re...
متن کاملGlucosamine reduces the inhibition of proteoglycan metabolism caused by local anaesthetic solution in human articular cartilage: an in vitro study
BACKGROUND We assessed whether local anaesthetics caused inhibition of proteoglycan metabolism in human articular cartilage and whether the addition of Glucosamine sulphate could prevent or allow recovery from this adverse effect on articular cartilage metabolism. METHODS Cartilage explants obtained from 13 femoral heads from fracture neck of femur patients (average age 80 years, 10 female) w...
متن کاملChronic Exposure of Human Endothelial Progenitor Cells to Diabetic Condition Abolished the Regulated Kinetics Activity of Exosomes
By virtue of lifestyle change, incidence of type 2 diabetes is increasingly being raised with different up-surging pathologies. This condition found to disqualify endothelial progenitor cells during neo-vascularization. Besides to an aborted differentiation property, malfunctioned paracrine activities exacerbate vascular abnormalities. It is found nano-scaled exosomes play essential roles on re...
متن کاملDistinct effects of glucose and glucosamine on vascular endothelial and smooth muscle cells: Evidence for a protective role for glucosamine in atherosclerosis
Accelerated atherosclerosis is one of the major vascular complications of diabetes. Factors including hyperglycemia and hyperinsulinemia may contribute to accelerated vascular disease. Among the several mechanisms proposed to explain the link between hyperglycemia and vascular dysfunction is the hexosamine pathway, where glucose is converted to glucosamine. Although some animal experiments sugg...
متن کاملتاثیر Chitosan بر ویژگیهای استئوژنیک سلولهای بنیادی مزانشیمال پالپ دندان شیری
Background and Aims: The exfoliated human deciduous tooth contains multipotent stem cells [Stem Cell from Human Exfoliated Deciduous tooth (SHED)] that identified to be a population of highly proliferative and clonogenic. These cells are capable of differentiating into a variety of cell types including osteoblast/osteocyte, adiopcyte, chondrocyte and neural cell. The aim of this study was to ev...
متن کامل